

Coupling of proteins to PureCube NHS-Activated Agarose

Overview

This protocol delineates a coupling procedure for proteins to PureCube NHS-Activated Agarose. Proteins are coupled covalently and can be used for different applications, e.g. purification of interaction partners.

Amounts given in this protocol are for 2 mL of a 50% NHS-Activated Agarose suspension, corresponding to 1mL agarose bed volume. The process can be linearly scaled up and down from 100 μ L to several 100 mL bed volume.

Separation of Agarose and supernatants in low mL scale can be done by centrifugation, or, more conveniently, using PureCube 1-step batch Columns. See the separate protocol available for a combination of these products. For larger scales, use of special equipment like glass vaccum tank filters, is recommended.

Please contact us if you have questions or need assistance optimizing a protocol for your application (contact@www.cube-biotech.com); other protocols can also be found at www.cube-biotech/protocols.

Equipment	Materials
☐ Centrifuge for 15 mL tubes☐ Centrifuge tubes (15 mL)☐ End-over-end mixer or thermomixer☐ Spectrophotometer	 □ PureCube NHS-Activated Agarose (10 mL, Cube Biotech #50303) □ Sodium dihydrogen phosphate □ Sodium chloride □ Sodium acetate trihydrate □ Sodium hydroxide (NaOH) □ Acetic acid □ Ethanol □ Ethanolamine

C_NHS_Ag_1510.3 1/3

Solutions and buffers

PBS Buffer, pH 7.2, 250 mL

Component	Final concentration	Molecular weight (g/mol)	Stock concentration	Amount needed for buffer
NaH ₂ PO ₄ dihydrate	150 mM	156.01	n.a.	5.85 g
NaCl	100 mM	58.44	n.a.	1.463 g

Instructions: Dissolve components in 200 mL water, adjust the pH to 7.2 with NaOH. Add water to a total volume of 250 mL.

Quenching Buffer, pH 7.4, 250 mL

Component	Final concentration	Molecular weight (g/mol)	Stock concentration	Amount needed for buffer
Ethanolamine	1 M	61.08	n.a.	15.27 g

Instructions: Dissolve component in 200 mL water, adjust the pH to 7.4 with HCl. Add water to a total volume of 250 mL.

Agarose Storage Buffer, pH 6.5, 250 mL

Component	Final concentration	Molecular weight (g/mol)	Stock concentration	Amount needed for buffer
Sodium acetate trihydrate	20 mM	136.08	n.a.	674 mg
Ethanol	20 % (v/v)		100 % (v/v)	51 mL

Instructions: Dissolve sodium acetate in 150 mL water, adjust the pH to 6.5 with acetic acid. Add 48 mL water and 51 mL ethanol to yield a total volume of 250 mL.

C_NHS_Ag_1510.3 2/3

Procedure

- Transfer 2 mL PureCube NHS-Activated Agarose suspension (corresponding to 1 mL bed volume) into a 15 mL centrifuge tube.
- 2. Spin the tube at $500 \times g$ to pellet the agarose. Remove the supernatant.
- 3. Wash the agarose with 2 mL PBS. Pellet the agarose and remove the supernatant.
- 4. Prepare a solution of 2.5 mL PBS containg the protein to be coupled to the agarose. The exact protein amount needs to be optimized, and 5 to 15 mg protein is a good starting point.
- 5. Add the protein solution to the agarose and mix by vortexing.
- Depending on the temperature stability of the protein, incubate at room temperature or 4°C for 2 h on an end-overend shaker or thermoshaker.
- 7. Spin the tube at 500 x g to pellet the agarose. Remove the supernatant and analyze the supernatant in a spectrophotometer. Record absorption at 280 nm to monitor coupling efficiency.
- 8. Add 5 mL PBS buffer to the agarose pellet, mix by vortexing, and spin at 500 x g. Remove the supernatant.
- 9. Repeat step 7.
- 10. Wash four times with 5 mL double distilled water each.
- 11. Add 5 mL Quenching Buffer and incubate again for 1 h at room temperature or for 4 hours at 4°C.
- 12. Wash four times with 5 mL PBS each, and twice with 5 mL double distilled water each.
- 13. Resuspend the coupled Agarose in 2 mL Agarose Storage buffer, yielding a 50% suspension. Store at 4°C .

Tip: The coupling reaction can be linearly scaled up and down, by increasing or decreasing the amounts of buffers and solutions described in this protocol.

Important: Once PBS is added, work quickly to avoid hydrolysis of the NHS groups.

Tip: When coupling a particular protein for the first time, try 3-5 different protein concentrations to make sure you are offering enough protein in the reaction but not wasting any protein.

Tip: Monitoring absorbance at 280 nm tells you about the coupling efficiency of the protein (compare A280 of the original protein solution to the supernatant in step 6 to determine % coupling). It also helps you identify the optimal amount of protein required for efficient coupling.

Note: The quenching step ensures that no free NHS groups are left on the agarose matrix that might interfere with subsequent assays.

